Journal of Thermal Analysis, Vol 29 (1984) 719727

AN INTERFEROMETRIC METHOD FOR MEASUREMENT
OF THE THERMAL CONDUCTIVITIES OF SOLIDS

M. Bertolotti, A. Ferrari, C. Sibilia, M. Tamburrini*, F. J. Bordoni*
and P. Jani**

SEZIONE FISICA, DIPARTIMENTO DI ENERGETICA, UNIVERSITA DI ROMA,
* GNEOP OF CNR, ITALY, ** CENTRAL RESEARCH INSTITUTE FOR
PHYSICS OF THE HUNGARIAN ACADEMY OF SCIENCE, BUDAPEST, HUNGARY

An interferometric method is described for the determination of small deformations of
a solid surface when heated by a c.w. gaussian laser beam, from which temperature increase
and thermal parameters can be derived. A discussion of the method is presented and appiied
to the measurement of thermal conductivity, for two different situations of an unrestrained
or restrained sample heated with a c.w. laser. Experimental results are finally given for a
semiconductor crystal of Si.

Thermal conductivities of solid samples can be measured through determination of
the dilatation of the sample when heated with a laser. Several geometries can be used
for this purpose; here we consider the case of heating with a continuous laser. Dilata-
tion can be measured with a simple interferometric method, which allows the deter-
mination of small displacements of the order of less than one thousand ;&ngstroms.
In the case of heating with a c.w. laser, after a short time, if the sample is not too
large, the temperature is nearly uniform throughout it, and dilatation is simply propor-
tional to the dilatation coefficient and to the temperature increase. As the temperature
increase is a function of the thermal conductivity, the method allows measurement of
this latter quantity if the other material parameters are known.

Below we describe first the interferometer used and two possible heating geome-
tries: one with an unrestrained slab, and the other with a slab with its ends axially
restrained. Further, the principal mathematical relation is derived and example of
application is discussed for a silicon sample. This example has been chosen because
the thermal conductivity is well known for this material, and a comparison can be
made between the known values of this quantity and the values derived from our
measurements as a function of temperature.

Experimental set-up

The interferometer used is shown in Fig. 1. The beam from a He—Ne laser is made
parallel by a telescope T and sent on to the main part of the interferometer which is
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a cube S, built up trem two roof prisms faced with each other, with the contact sur-
face Su partially reflecting. The laser beam is therefore split into two beams 1 and 2,
which are reversed by a corner prism P and by reflection at the specular surface of the
sample Se through a lens L, respectively. They are then superposed on the detector D.

<o

Fig. 1 Interferometer

The sample is heated by a powerful laser P1. Two different mountings of the
sample can be used; without rigid surface restraining, or with rigid surface restraining.
In both cases, if the light intensity in the *wo split beams is the same, /, the intensity
at the detector, /p, can be written as

tp = 211 + cos AD) (1)

where A is the phase difference between the beams:

A<I>=—2}—Zl(d1 —dy) +5¢ (2)

dq and dy being the distances travelled from point A to point B through the two
paths, respectively, and taking into account the phase shift at the reflections. The
heating laser beam (Ar+ laser) impinges on the surface Se in the same point which is
inspected via the interferometer. The dilatation S(t) of the surface produces a phase
shift

2
8(4%) = S 25() (3)
The number of fringes detected by D and recorded on an X—Y piotter gives measure-
ment of S(t). If a fifth of the fringes can be appreciated at A\ = 6328 :& a minimum
change of A/=320 A is measured. If a great number of fringes pass through the

detector, there is no difficulty in counting them, provided they move slowly enough.
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Therefore, large displacement of the order of several microns can easily be measured
with great precision.

With this disposition the vertical displacement of the centre of the heated spot is
measured in a large range of values, and its value can be connected with the thermal
dilatation of the material and the temperature distribution in the sample.

Theoretical relation between dilatation, time and temperature

The problem of heating and subsequent displacement of a solid slab of thickness
fp, iluminated on one side by a gaussian ¢.w. laser beam, is fully treated elsewhere [1].

The laser intensity is given by

Ir) = I exp (—%V%z} (4)
0
where W is the laser spot.

in the following we use the thermoelastic quasistatic formulation [2]. First, the
temperature distribution at the centre of the laser spot is derived, starting from the
Fourier equation for heat conduction in solids [3], and using the ‘idea’ of an in-
stantaneous point source of heat liberated at time t = 0.

In the case of a slab with thickness /o < ¥'xt (x is the thermal diffusivity), the ex-
pression for the temperature at the centre of the laser spot is very simple, and can be
derived in the cases of slab in air or in vacuum (for a stab with transversal dimensions
much larger than /o).

In vacuum it is

Iol1 — RYW2 Ayt + W2
70,600 =— O 1n (= ) (5)

4AK(T) 2
cont. gauss. M WO

where K(T) is the thermal conductivity, X is the thermal diffusivity, Wp is the laser
spot, and R is the reflectivity.
The temperature in air can be written as

Il —RWZ  k—2W?2

M0, t, k=2) == exp (—7—)
cont. gauss.
k—2wW32 k—2W2
£ —E [+ 1) (®)

w2 .
where E4 is the exponential integral function, and k—2 = 2H/Kly represents the air
losses, H being the air conductance.
From Egs (5) and (6} it is apparent that after a very short time the temperature
distribution is constant through the thickness of the slab.
When the slab is unrestrained (for example the slab is mounted with elastic and
thermally isolated tongs), the thermoelastic theory yields a very simple expression
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Fig. 2 Geometry for the restrained slab

for the vertical displacement at the centre of the laser spot {r = 0), which can be
written as

Sty =a(l+ ) ATl 7)

where « is the thermal dilatation coefficient, ¥~ is the Poisson coefficient, and AT
is the temperature increase.

When the sample is heated in air, air heating must be taken into account, which
produces a perceptible fringe displacement [1].

When the sample has both ends rigidly fixed in the axial direction {see Fig. 2},
its vertical displacement can be derived in the approximation of ‘small deflection’
theory as

Sr(t) =5{t) + D(x) (8)
where S(t} is given by Eq (7) and [4]

2L Py — P!

D{t) = - AE (9
where D{t) = 0 for Py <P,,, L is the transversal length of the slab, A is the cross-
section, £ is Young's modulus, P, = 7r2EA/g/3L2 (critical load), and Pr ~ AEaAT
in the approximation of uniform heating of_the slab (this approximation is correct
if the transversal dimension also fulfils L < ¥xt). From Eq. (9) we have

2L
Dt) ~—7T— QAT — — (10)
for P+ > P,,), and the total displacement, ‘seen’ by the interferometer is

2 n2/3
Srit) =all + ¥ )ATlp + — | aAT —
n 3L2

(11)

J. Thermal Anal. 29, 1984



BERTOLOTTI et al.: AN INTERFEROMETRIC METHOD 723

Results and discussion

We have applied the preceding discussion to the simple case of a Si sample, by
using a c.w. Ar+ laser as a heating source. Figure 3 illustrates a typical run, showing
the fringe movement from the time at which the Ar+ laser was switched on, in the
case of an unrestrained sample in vacuum, for a laser power P = 3 W.
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Fig. 3 Fringe movement with sample unrestrained in vacuum (P = 3 W)
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Fig. 4 Fringe movement with sample unrestrained in air {P = 1.8 W)
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The effect of air heating is evident in Fig. 4, obtained with the sample unrestrained
in air. In this case, a few seconds after the heating is began, the surface is'already warm
enough to heat air ir its vicinity. The highly non-uniform thermal gradient produces
a turbulent movement of the air, with consequent large fluctuations of the refractive
index. These fluctuations appear in the interferometer as large fluctuations in the
positions of the fringes, as depicted.

From runs such as those presented in Figs 3 and 4, the dilatation S(¢) as a function
of time. for an unrestrained slab can be calculated. Figure 5 shows this for different
values of the Ar+ laser power in vacuum; a comparison with theoretical results is also
shown in Fig. 5. With a power P = 3 W, the estimated temperature increase is about
300° (see Fig. 6).

@

51, x10% cm

Fig. 5 Thermal dilatation for Si in vacuum; continuous curves are experimental data, broken
curves are from theory

Figures 7a and 7b show fringe movements in the case in which the slab (Si with
fo = 50 um) has fixed ends, for powers P = 0.1 W and P = 0.2 W, respectively, in air.
in this situation the displacement is due to the buckling of the heated slab. The
estimated temperature increase is AT~ 6° for P=0.1 W in air, and AT ~ 9° for
P =0.2W in air.

Figures 8a and 8b show the total displacement as derived from Figs 7a and 7b,
respectively. The broken curves in Fig. 5 have been calculated by assuming a thermal
conductivity behaviour with temperature

__A
KN =—% (12)

with A =299 W/cm and B =99 K, as given in the literature [5]. The continuous
curves in Fig. 8 have been calculated for a fixed value of K = 1.5 W/cm deg. Con-
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versely, the curves in Figs 5 and 8 could be inverted to obtain AT and then k(7).
It can be shown, for example, that a change of 10% in the coefficient B in Eq. (12)

would give the best fitting of the broken curves in Fig. 5 with the experimental points,
as shown in Fig. 9.
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Fig. 8 Temperature values for different power values {unrestrained stab)
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Fig. 7 Fringe movement for a restrained slab of Si (/g =50 um) in air. 7a) P=0.1 W,
7b)P=02W
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Fig. 8 Displacement of the restrained slab in air. 8a) P=0.1 W, (s m » curve is for # = 10-3
Wicm2 °C), (aaa curve is for H =56+ 10—3 W/cm2 °C},8b) P = 0.2 W (= » = curve is for

H=5+:10~4W/cm2 °C)
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Fig. 9 Thermal conductivity as a function of temperature. Continuous curve as from literature;

kroken curve from theory
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Conclusions

The above discussion and the examples show that it is possible to measure thermal
conductivity as a function of the temperature of a solid sample by measuring the
vertical displacement of the surface when heated with a laser.

As applied to silicon, for which thermai conductivity behaviour is well known,
the method shows that the values derived by making the best fit of the theoretical
curve with the experimental data give the expected thermal conductivity parameter
within 10% of the values repoted in the current literature.

In vacuum there is no adjustable parameter, while in air a reasonable value for air
losses has to be assumed.

Two different geometries have been discussed, which allow measurements to be
made at nearly constant temperature {restrained sample} or as a function of the
temperature {unrestrained sample).

Finally, it may be noted that the method can be used with energy-abosrbing
specular surfaces.
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Zusammenfassung — Eine interferometrische Methode zur Bestimmung kleiner, beim Erhitzen mit
einem Laserstrahl auftretenden Deformationen einer festen Oberfliche, aus denen die Temperatur-
erhdhung uhd thermische Parameter abgeleitet werden konnen, wird beschrieben. Die Methode
wird diskutiert und ihre Eignung zur Bestimmung der Warmeleitfihigkeit bei zwei verschiedenen
Situationen einer mit einem c.w. Laser erhitzten “unrestrained” oder "restrained’’ Probe aufge-
zeigt. Experimentelle Ergebnisse werden fiir einen Silicium-Halbieiterkristall mitgeteiit.

Pesiome — OnucaH umHTepthepomeTpuyecKnii meToa onpenensHnA MebGonblunx aecopmaini
TBEPAbIX MOBEPXHOCTEA NpPU HAarpeBaHMK uUX nasepHbIM MIYYEM Ha OCHOBE KOTOpOrO MOMeT
6bITb YCTAHORNEHO YyBEnWYEHMe TemnepaTypbl W TepMuueckue napametpbi. [peactasneqo 06-
cyXaeHue MeToga v NpPUMeEHeHVe ero ANIA M3MepeHUA TennomnpoBoOAMMOCTY 06Pa3UOB KaK roa-
BEpPrHYThiIX Harpesy nasepHbIM Ny4éM, TaK W He NOABEPTHYTLIX NasepHoMy Harpesy. [puseaens!
3KCNEpUMEeHTaNbHbIe pe3ynbTaThl ANTA NONYAPOBOAHAKOBOrO KpUCTanna KpemMHua,
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